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1. I N T R O D U C T I O N  

During recent years work on the stability of concentration waves in bubbly flows has been 
published by Geurst (1985, 1986) and Geurst & Vreenegoor (1988) while the present author and 
his colleagues have worked on the same problem (van Wijngaarden & Biesheuvel 1988; Kok 1988; 
Biesheuvel & Gorissen 1990; van Wijngaarden & Kapteyn 1990). 

Since results by these two groups are different it is of interest to inspect these differences. 
We shall show in this note that the stability criterion, derived by Geurst (1985, 1986), is restricted 

to the case in which there are no interactions between bubbles. In the formulation by Geurst there 
is the added mass coefficient m, which is a function of the gas concentration E. Geurst finds, under 
marginal stability, this to behave as 

m(E) = ½pLE(1 - E)(1 -- 3c). [1] 

While this is in itself correct, under the envisaged circumstances, the frame considered being a 
laboratory frame and bubbles having all the same velocity, some conclusions drawn from [1] by 
Geurst are erroneous. Namely, conclusions regarding bubble interactions, the probability distri- 
bution and special events at E = 1/3. It is the purpose of  this note to show the exact meaning of 
[1]. 

2. P H Y S I C A L  I N T E R P R E T A T I O N  O F  T H E  S T A B I L I T Y  O F  V O I D  
F R A C T I O N  W A V E S  

Imagine a void fraction profile like the one sketched in figure 1, where e increases in the direction 
of x. The work by van Wijngaarden & Kapteyn (1990) admits the following physical explanation 
of  stability. Let us write the drag W on a bubble as 

W = F(E ) (Uc - U0). [2] 

Here Uo is the average gas velocity and U0 is the volume velocity. With the average liquid velocity 
UL, the volume velocity is defined as 

U0 = EUG + (1 -- E)UL = UL + ~(Uo - UL). [3] 

F(E) is a drag coefficient. Experimental observation shows that F(E) incrcases with increasing E, 

dF 
d---~ > O. [41 

If  the available force to overcome friction is buoyancy, this means that (U~ - U0) will decrease with 
increasing E. 

Since small disturbances travel in the x direction, as a result of  the volume conservation 

& & OUG 
+ uo~ox + E-~--x = 0, [5] Ot 
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Figure I. Bubbly flow in a vertical tube. The void fraction 
increases in the direction of x. 
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Figure 2. N bubbles in a volume V. The liquid occupies 

I/L = V-- ~ ~//'. 
i = |  

with a velocity close to U~, disturbances originating in a low E region travel faster than those 
coming from a high c region. This tends to cause instability. There is a stabilizing mechanism, 
however, due to the impulse of the fluid which is associated with added mass. The fluid impulse 
has contributions from the average bubble motion and from the fluctuations. We restrict this note 
to the former. The impulse of  a bubble can on the average be represented as 

I = M(E)(Uc - U0), [6] 

where M is the added mass which is a function of E. When, with increasing c, the impulse of the 
liquid also increases, then the reaction force on the bubbles in figure 1 is negative in the x direction 
and is stabilizing. One could say that of the available force to overcome friction [in the case of 
figure 1, buoyancy] a part is taken off by this reaction force. Of course this is only the case when 
the impulse increases with increasing E. In the opposite case, when the fluid impulse associated with 
the bubble motion decreases, the bubbles receive an extra upward force which is destabilizing. 

Mathematical analysis, e.g. in van Wijngaarden & Biesheuvel (1988) and Biesheuvel & Gorissen 
(1990), shows that the condition for stability is 

1 dM 1 dF(Q 
-- > - -  [7] 

M(c) dE F(E) dE 

When fluctuations and other effects like diffusion are taken into account, [7] becomes more 
complicated. For  the present purposes this simplified picture suffices. 

The E dependence of both F and M is the result of hydrodynamic interactions between the 
bubbles. In the (non-realistic) case in which a change in E would not produce a change in Uc, [5] 
indicates that small disturbances travel locally all with the same speed UG. This is the situation 
which is envisaged by Geurst (1985, 1986). In his work concentration waves all travel with the same 
speed. This amounts in terms of  [7] to dF/dE = 0. Hence, for that particular case the condition for 
marginal stability is 

dM 
- -  = 0 .  [81 
dE 

This is, as we shall show in the following, precisely what result [1] by Geurst means. 

3. STABILITY ANALYSIS OF G E U R S T  (1986) 

Geurst (1986) starts with a variational formulation, in which, of  course, the kinetic energy plays 
a vital part. Kinetic energy takes different forms in different frames of reference. Geurst chooses 
a laboratory frame and writes the kinetic energy density, i.e. the kinetic energy in a unit volume 
of a bubbly suspension as in figure 2 as (PL being the liquid density): 

T = ½ P L ( 1  - -  E)U 2 + ½PLm(¢)[(lUo -- ULI)2]. [9] 
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When E 0 the only kinetic energy is 1 = -~pL U2, for non-zero E the presence of  the bubbles leads to 
the additional energy represented by the second term on the r.h.s, of  [9]. This, of  course, is a valid 
representation. The difficulty is that Geurst identifies m (E) in [9] as the average added mass density. 
This is not true, see section 4. 

Using the Lagrangian formalism and ignoring friction, Geurst derives the Euler equations 
associated with the appropriate variational principle. He goes on to inspect the characteristics of  
these equations and finds that they are not always real. A minimum condition, and with that a 
condition for marginal stability is [1], which we repeat here for convenience: 

m(E) = ½ P L £ ( l  - -  E ) ( 1  - -  3e). [10] 

Geurst discusses this result more than once in his work. 
In Geurst (1986, p. 463) he points out, referring to the calculation of  M(E) in van Wijngaarden 

(1976), that [10] requires a special configuration of  bubbles, notably one in which gas bubbles tend 
to align themselves in the direction of  mean flow. In the same paper, on the same page, he also 
suggests that the disappearance of m(E) at e = 1/3 has to do with the transition to plug flow. 

4. K I N E T I C  E N E R G Y  AND A D D E D  MASS D E N S I T Y  

The content of  this section is a condensed version of Kok (1988). We look first at the motion 
of an isolated bubble moving through a liquid which far from the bubble has the velocity U0. The 
motion is incompressible and irrotational. We consider the kinetic energy of the liquid in a frame 
which moves with the velocity U0: 

T = ½PLf(U -- Uo)" (u - U o ) d V .  i1 1] 

Writing u - Uo = V~b this can be written with help of  Gauss's theorem as 

~PL ( f l V t f l  • ndA - • [12] ~flL tpVtp ndA. 
ubble 

Since at infinity the velocity u -  Uo = V~b vanishes fast enough, the first integral in [12] is zero 
and we have 

= --iPL ~bV~ " ndA = - Uo)" - i ( U o  pLq~n dA. 
ubble 

The integral in [13] is precisely the impulse 

[131 

--fpL~n dA = I = M(UG - Uo). [14] 

Hence, in this case the quantity pL K in 

T = ½PL(IUG -- Uo I)2K 

is the same as the quantity M in 

[151 

I = M ( U ¢  - U0) .  [161 

One question is whether this is also true for the average of similar quantities in a mixture. Another 
question is whether this holds when we describe the energy in a laboratory frame. 

Let us first address the former question. When there are, for instance in the cloud in figure 2, 
N bubbles in a cloud of volume V, we define in analogy with [11] the kinetic energy density 

7"=~---~fvL(u-Uo).(u-Uo)dV, [17] 
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where VL is the volume occupied by liquid, or 

~ ½-~fA ~ l [ u C ' i v U ° l  f T =  - - -  ~V~b.adA = - ~  " Prq~ndA, 
i = l  i i = i  

where u~,~ indicates the velocity of the ith bubble. 
Comparison with [13] and [14] shows that the coefficients in the kinetic energy and in the impulse 

are the same when (angular brackets meaning averages): 

( (u~ -- Uo ) f pL d, n dA ) = (U~ - Uo )( f pL ~ n dA ). [18] 

This is only the case if there are no fluctuations in the gas bubble velocities. Since fluctuations are 
brought about by interactions, this is the case when no interactions take place. The only case in 
which there are interactions and no fluctuations occurs when there is a long range order in the 
bubbly suspension, leading to a periodic array. In such a case, the proper expansion parameter to 
describe interaction effects is e i/3, not E. 

For further reference, and in analogy with [15], we write [17] as 

1 l fv f T =  ~pL(1 - - e ) ~  (u-- Uo) • ( u -  Uo)dV = - - ~ 2  V PkC~ndA 

I 
= ~ PL K*(E )(I U o  - U0 I) 2. [191 

When we write for the impulse density 

I = PL M*(E)  (UG -- U0),  [20] 

we conclude that M*(E) and pLK*(e) are not the same in general but are identical when all bubbles 
have the same velocity. This is the case in the situation envisaged by Geurst (1985, 1986). 

To arrive at energy or impulse density there is a summation over N bubbles and a division by 
V, the volume of the bubbly cloud, i.e. a multiplication by N~ V, the number density n, say. Since 

e = n~/', [21] 

being the volume of an individual bubble, we have n = E/~. Therefore, we find from M*(O 
in [20] or lpLK*(e ) in [19] the average quantity pertaining to an individual bubble through 
multiplication by ~/e.  

The average kinetic energy associated with one bubble is then 

1 , w ( I U c -  Uo I): [221 (T)=~pLK (E)--d- 

and 

( I )  = M*(E)--~- (U o - U0). [23] 

Because in the case envisaged by Geurst all bubbles move with the same velocity there is 
equivalence between ½PLK*(E) and M*(E) and he should have found that his m(c)~/E is 
independent of E. We see from [1] that this is not the ease. What is the reason for this? 

5. ENERGY DENSITY IN A LABORATORY FRAME 

We express the kinetic energy T of the mixture in the laboratory frame as 

T' = --21-PL fU" U dV. [24] 

The integration is over the whole volume V occupied by the cloud. The corresponding energy 
density is obtained by dividing through V. 
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Since only the liquid contributes, the gas density being negligibly small, 

• u" u d V, [25] T=2PL-v L U udV= pL(l --E)~LL VL 

where, again, VL is the volume occupied by the liquid. Again u can be expressed in terms of  a 
velocity potential, however we cannot reduce the integration from volume to surface integration 
over bubbles only since the integral over the surface at large distance diverges. Therefore, we write 

u = u - Uo + Uo = u' + Uo [26] 

and insert this into the integral in [25]. 
Making use of [3] and of  

~ f  u ' ' U 0 d V = U 0 " ( U L - - U 0 ) = - - E ( U o - - U L ) ' U 0 ,  
VL 

we obtain 

1 1 2 1 I f  
T = ~ p L ( 1 - - ( . ) U 2 - - ~ p L  £ ( 1 - - e ) ( I U G - - U L I ) 2 + 2 P L v , I  u " u ' d g .  

VL 

The third term on the r.h.s, has been calculated in section 4, resulting in [19]. Making use of  

U G - -  U 0 = (1 - ~ : ) ( U  G - U L )  , 

we finally obtain, using [19]: 

T = ½PL(1 -- E)U[ + ½(IUo -- UL I):[pLK*(O(I -- 0 2 -- PLe2(1 -- E)]. [271 

When interactions are disregarded pLK*(£) = M*(~:), see [23], which is connected with the average 
added mass M*~/e. Hence, the expression 

T = ½PL(1 -- E)U2L + ½(lUG - UL I)2[M*(Q (1 -- E) 2 -- PLE2(1 -- ¢)] [28] 

can be compared with Geurst 's expression [9]. 
We see now that, in contradiction to Geurst's conclusion, it does not have the added mass density 

as a coefficient in the term quadratic in ( l U G -  ULI) 2 but 

M*(Q( I  - E) 2 - E2pL(1 -- E). [29] 

In the absence of interactions, there are no fluctuations in the velocities of individual bubbles which 
therefore all move with the same velocity. The added mass of each bubble is then ½ PL 3e', and hence 

M (E) = - ~ .  ~pL3e ~ = ½PLE. 

Inserting this into [29] gives 

½pLE(1 -- E)(1 -- 3E), 

exactly the quantity (see [9]) which Geurst finds. 

6. C O N C L U S I O N  

We must conclude that Geurst 's result [9] means that with bubbles at a velocity unaffected by 
changes in E concentration waves are marginally stable when the average added mass does not 
depend on concentration. Geurst, on the contrary, states that [9] describes a specific dependence 
of average mass on e, necessary for marginal stability, and connects this with statements about 
bubble configurations and singular behaviour at E ~ 1/3. 

Acknowledgements--The author thanks J. Bour6 and G. B. Wallis for an illuminating discussion on the topic 
of this note. 
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